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Abstract. For perturbed harmonic oscillators, a hypervirial recurrence relation is examined 
to discover the positions of vanishing elements in the matrix perturbation coefficients 
(MPCS) of the x N ( A )  matrices. It is found that only certain families of elements in the 
MPCS can be evaluated from the recurrence relation. 

1. Introduction 

In a recent paper, Clarke (1985) presented an algorithm for the calculation of perturba- 
tion series for the transition moments ( m l x l n )  of the Hamiltonian operator in one 
dimension 

H = - a D 2 + k ~ 2 + A ~ 2 Y .  (1) 

The calculation rested on a structural law for the matrix perturbation coefficients 
(MPCS) of the x(A) matrix, which gave the positions of vanishing elements in these 
coefficients. The law for the x(A) matrix (with v = 2) required no proof in this context. 
For the purpose of the calculation it could be regarded as a postulate which acquired 
validity through the consequent agreement of the calculated (mlxln) perturbation series 
with results obtained from variational calculations. However, the law asserted in this 
paper was more general than that demanded by the calculation and consequently 
stands in need of proof. Although this had been achieved when the transition moment 
algorithm was in preparation, a much simpler demonstration has since been found. 

For the general Hamiltonian 
Y 

H = - a D 2 + p x 2 + A  A,x2‘ 
, = 2  

we shall prove that matrix elements in the yth order MPCS of x Z h + l ( A )  vanish for 
eigenstate indices m, n which satisfy 

Im-n lZ  2 s +  1 s = 0,1, .  . . , h + y (  v - 1) h, y 3 0  v 3 2 .  

This structural law is of interest not only for its mathematical simplicity. In anharmonic 
oscillator calculations involving sums over products of MPC elements, the law realises 
its practical value by converting infinite sums into finite ones through the exclusion 
of known vanishing elements. 
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2. Hypervirial recurrence relation 

The hypervirial recurrence relation derived by Clarke (1985) is based on the Hamil- 
tonian (1) and involves perturbation series representations for the (mlxkln)  elements 
and the energies E, so that 

cc 

x k ( A ) =  Q F A '  
1 =o 

00 

E:,,(A) = ETA' 
, =o 

X 

E,,,(A)= EYA' 
Z=O 

(3) 

where ET = ( E ,  + En)i and E ;  = ( E ,  - E n ) k  If we now consider the more general 
Hamiltonian (2) and regard only the odd power moments ( k  = 2 h  + 1) we arrive at the 
relation 

Y 

= 4 ~ ( 2 h  + 1) c A , ( 2 h  + t)Q?,(?~')-' - 4 a h ( 2 h  + 1 )  ET+:,Q,Zh-' 
1=2 i + j = y - l  

- 2' 2 E ; E ; Q t h f 1 - 4 a 2 h ( h  - 1 ) ( 4 h 2 -  1)Qrb3 
u = o  r+v=y- -U 

- 4 a h ( 2 h +  l)EiQ:-'. (6) 

The positions of the vanishing elements in the Q matrices will be determined by 
the function 

A( m, n, 2 h + 1 ) = [ ( m - n )' - ( 2  h + 1 1'3. ( 7 )  

This function appears on the left-hand side of (6) and depends on the eigenstate indices 
m, n and the recursion index h. We can see that by considering the possibilities 
/ m  - n I = 2 h + 1 and I m - n I # 2 h  + 1 there are four possible conclusions we can reach 
about ( mlQthf'ln) depending on the vanishing or non-vanishing of the right-hand side 
of (6); 

( i )  defined and undetermined ( A  = 0, RHS = 0) ; 
(ii) undefined ( A  = 0, RHS # 0) ; 
(iii) vanishing ( A  # 0, RHS = 0);  
(iv) defined and determinable ( A  # 0, RHS # 0). 

We shall form (i), (ii), (iv) into two groups: the defined values 0, (i), (iv) which are 
either given to the recurrence relation as initial values (i), or are recursively determined 
from given values (iv); and the undefined values U, (ii), which the recurrence relation 
cannot determine. This distinction shall be carried through our structural analysis 
since it will be of use later to know the positions of the defined (knowable) elements 
in order to arrive at a recurrence relation for them. These considerations reduce the 
possible conclusions about Qy" to 

( a )  vanishing; 
( b )  defined-D; 
(c)  undefined- U. 



Structure of matrix perturbation coe#cients 273 1 

Representing quantities in this way for a structural analysis of QY+l renders 
attention to constants in ( 6 )  superfluous so long as we adhere to the ‘Q-convention’ 

QY“ = 0 y ,  2 h  + 1 < 0. (8) 

This embodies the vanishing of these constants and at the same time gives the condition 
of the existence of the Q matrices. Since the multiplication of the Q matrices by 
defined constants has no effect on the status of the matrix elements-i.e. vanishing, 
defined, or undefined-we can absorb the constants into the matrices and write (6) in 
the form 

A(m, n , 2 h + l ) Q Y t ’  

Our next task is to investigate the type of results arising from (9). 

3. Form of results 

The recurrence relation operates by selecting eigenstates m, n and running up the h 
from h = 0 at each y in ascending order beginning at y = 0. The Q’,”” elements 
obtained in this way depend on given zeroth-order elements and are substituted back 
into (6) to support the later calculations. 

For example at h = 0, y = 0 we have 

A(m, n, l)QA=O (10) 

having made use of the Q-convention (8). QA is the x matrix of the pure harmonic 
oscillator. The possibilities Im - nl = 1 and Im - nl # 1 lead through equations (7)  and 
(10) to the result 

Q A =  D S m , n * i .  (11) 
Equation (11) informs us that the matrix elements of QA vanish when lm - n (  # 1. For 
brevity, we shall rewrite the Kronecker delta 8m,n+(Zh+l) as S , h + l .  

Advancing h to h = 1 in (9) gives 

A (  m, n, 3) Q i  = D6, 

Q i  = DS, + D6,. 

(12) 
so that the alternatives / m  - n /  = 3, and / m  - n /  f 3 give the result 

(13) 

Continuing in this way, we expect all zeroth order matrices to contain only 
defined quantities. 

If we choose h = 1 in the first order ( y = 1) and examine only how the second and 
third terms on the right-hand side of (9) are modified by the A function, we have, after 
substitution of previous results, the solution 

Q:=(DG,)+(DS,+ U6,). (14) 

Of course, other terms containing both defined and undefined quantities will appear 
in (14), so before proceeding further we must set up some rules of addition for these 
quantities in order to express our results as briefly as possible. 
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4. Rules of addition 

There are three fundamental rules of addition for defined and undefined quantities 
which require no proof and serve as axioms; 

Only the form of the quantity is of interest here without regard for particular quantities. 
It follows from these axioms that 

P 

s = O  s = o  s = O  
2 D82s+1+ c D82s+1= i D82S+I 

i U82s+1+ E D82s+1= i U82,+1 

2 U82s+1+ c U82s+l= i U 6 2 S + I  

s = o  S = O  s = o  

P 

S = O  s=O s = O  

for a 3 p and also 

P '  (i s = O  U 8 2 s + 1 +  s = a + t  E D8,,_,)+( s=O E U82s+l+ r = a ' + l  c D82s+l) 

=( 2 U82s+l+ E D82s+l) p 3 p' ,  a 3 ff ' 
s=O S = a + l  

Now that sufficient ground has been prepared, the place has arrived to find the structure 
of the general a',"'. 

5. Structure of QY+' 

We advance the postulate that the structure of for the Hamiltonian (2) is given 
by 

h + y ( v - I )  h + (  y-- l ) (  v - I )  

s=O 
QY"= U82s+l+ c DS2s ,+i .  

s ' = h + ( y - I ) (  u - l ) + l  

In accordance with our expectations from § 3 about the zeroth-order Q matrices ( y = O), 
the convention is to be adopted in (22) that at y = 0 the sum over s vanishes and the 
sum containing the defined quantities commences from s ' = O .  (If we had not distin- 
guished between defined and undefined quantities we would only have had one sum 
in (22), with limits p = 0 and p = h + y(  Y - l) ,  and the convention for y = 0 would have 
been unnecessary.) The terms on the right-hand side of (9) can be represented according 
to (22); 

Z 

Q2(h+r ) -1=  Y - 1  ( f U82s+l+ c DS,,,,,) (23) 
1=2 r = 2  s=O s'= Y 



Structure of matrix perturbation coefficients 2733 

where 

x = h + ( y  - 1)( v -  1) + ( t  - v )  

Y =  h + ( y -  l ) ( v -  l ) + ( t  - v)+ 1 

z = h + y (  v - l ) + ( t  - v) 
r-1 h + ( j - l ) ( u - l ) - l  h+j (u-11-1  

j = O  j = O  

Y - l  

U =o U =o 

Q j h - ' = t 1  ( s = o  U L C l +  s ' = h + ( j - l ) ( u - l )  1 D82s,+l) (24) 

Q i h + l =  ( zo Ufhs+~+ 
y- l  h + ( u - l ) ( u - l )  h + u ( u - l )  c 

c D8 2s'+ 1 

s ' = h + ( u - l ) ( u - l ) + l  

h + (  y-I)( v - 1 ) - 2  h + y ( u - l ) - 2  

s ' =  h + ( y - I ) (  u - l ) - l  
c U 8 2 s + l +  

s = o  
Qt"-'= 

The aim is to prove that the sum of the terms in (9 ) ,  given by equations (23)-(27), 
reduces to (22) thereby validating the postulate. 

Equations (23)-(25) can be simplified. If we consider (23) for y 5 1 the sum over 
t reduces to one term (at t = v )  through repeated use of (18) and (21). We then have 

Similarly, taking note of the convention tied up with (22), equations (24) and (25) 
become 

Y - l  h + ( y - 2 ) ( u - l ) - 1  h + ( y - l ) ( v - l ) - l  

Q f h - ' = (  U C % ~ + ~ +  D82s,+l) (24a) 
j = O  s = o  s ' = h + ( y - 2 ) (  U - I )  

Y-1 h + ( y - 2 ) ( v - I )  h + ( y - I ) ( v - I )  

u = o  QEh-'=( s=o c D82S'+l 
s'= h + (  y-2) (  " - ] ) + I  

so that we find, as we did with (23), that the term corresponding to the upper limit of 
the sum over the Q matrices dominates and absorbs the other terms. 

We shall now prove the validity of the postulate (22) for the three cases y = 0, 
y = 1, y 5 2. At y = 0, the convention relating to (22) leaves (9) as 

h-2 h - l  

A(m, n, 2h + l)QEh+' = D 8 2 s , + l  + D 8 2 s ~ + l .  (28) 
s ' = O  s ' = O  

Use of (18) and subsequent determination of QEh+' by the A function gives 

which validates (22) at y = 0. 
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Setting y = 1 in (9) produces 

A(m, ~ 1 , 2 h + l ) Q : ~ + '  
h + u - 1  

= ( s = o  U62s+l + s ' = h + l  D82,~+1) + ('2' s'=O D82,,+1) 

+( s ' = O  D 8 2 , ~ + 1 ) + ( y  S =o U L + I +  s ' = h - 1  DS,,+I) 

h + u - 3  

h + u - 2  

Reduction of (30) with (18) and (19), noting that v 3 2, followed by reduction with 
(21) produces 

h h + u - 1  

A(m, n, 2h + l ) Q i h f l  = 1 U8zs+l + C D82s,+l. 
s=o  s ' = h + l  

Determining @'+I with the A function leaves unchanged so that 

thereby confirming (22) at y = 1. 

(23a), (24a), (25a), (26) and (27). These may be reduced with (21) to give 
Finally, for y 2 2 we have A(m, n, 2h + l )QY+'  equal to the sum of the terms in 

h + ( y - l ) ( v - l )  h + y ( v - I )  

A(m, n,2h+l)QZ,h+'= u82s+l+ c D82s,+l. 
s' = h + (  y - 1 ) (  o- 1 )+ 1 s = o  

(33) 

This yields the result 

h + ( y - l ) ( u - l )  h + y (  "-1) c D82s'+1 (34) 
s ' = h + ( y - l ) ( v - l ) + l  

c ~ 8 2 s + 1 +  
s =o Q2"" = 

validating the postulate (22) for y 
QY", the MPCS of xZh+'(h),  vanish for eigenstates m and n satisfying 

2. The essence of (22) is that matrix elements in 

Im -nl# 2s+ 1 s = O , l ,  . . . ,  h + y ( v - l ) .  (35) 

For the zeroth-order case ( y = O), the result (29) is given by Kilpatrick and Sass 
(1965) who derive the defined zeroth-order elements D in (29) in terms of polynomials 
in the quantum numbers m and n. 

We can provide some independent support for the first-order case ( y  = 1) by 
considering the Rayleigh-Schrodinger series to first order for the perturbed state vector 
In)'. This is given by 

where /m) and E,,, are respectively unperturbed state vectors and energies. We shall 
confine our attention to the case where the potential energy is V = x4 ( v  = 2). After 
advancing n to n + 5  in (36) we can form the ( n l x l n + 5 ) '  perturbed element to first 
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order, so that 

2735 

n ( x l n  + l ) (n  + 11x4)n + 5 )  
(( ( - E n + 5 )  

(nix1 n + 5)' = 0 + A 

) +  . . .  ( n  + 51xIn + 4)( n +4(x4)n) + 
( E n + 4  - En ) 

(37) 

having observed that the x operator may only link adjacent unperturbed eigenstates. 
In consequence of this observation, the numerators of each first-order term become 
(n lx51n+5) .  We also note that the energies of adjacent eigenstates of the harmonic 
oscillator differ by equal amounts, so that 

( E n + I -  E n i - 5 )  = - ( E n + d - E n ) .  (38) 

This gives the vanishing of the first-order term in (37) by cancellation, for Im - nl= 5 ,  
contrary to expectation. Placing h = 0, y = 1, v = 2 in (35) shows that the first-order 
elements (m1Qiln) vanish for Im - nl# 1,3, in particular for Im - nl= 5, in accord with 
the Rayleigh-Schrodinger result. 

with summation limits smin=p and 
skax = h + ( y - q ) (  v - 1) + r are valid postulates (where p ,  q, r are constants), however, 
only the choice p ,  q, r = 0 yields the correct result at y = 0. 

The lower limit of the defined elements may, in general, be skin= 
h + ( y - q')(  v - 1) + r' where q', rr are constants. We fix s' in the recursion and select 
the lowest order ( y  = 1) at which the sum over s' for the defined elements is valid. 
Q:'+' is recursively determined by using ascending values of h from h = 0 and 
substituting previously calculated results back into the recurrence relation. For 
to be defined we must have s' > h otherwise at some h in the sequence of determinations 
for we have s'= h and ,:'+I becomes undefined. It follows that the minimum 
value of s' for which ,:'+I remains defined is ski,, = h + 1 so that with y = 1 we have 
q' ,  $ = l a  For general y we then have s i i n =  h + ( y - 1 ) ( u - 1 ) + 1 .  

We now turn our attention to the defined elements in (22) for y > 0. These are the 
elements which conform to the condition 

In general, a class of functions for 

Im - nl= 2s'+ 1 

h a O ;  y > O ;  v 3 2 .  (39) 

s ' =  h + ( y - l ) (  v - I ) +  1,. . . , h + y (  v - 1) 

Their values can only depend on given zeroth-order elements. This dependence is a 
property ofthe recurrence relation (6) which we shall see reduces to a special recurrence 
relation for the range of s' given by (39). 

6. Recurrence relation for defined elements 

Equation (39) gives the range of s' for which the recurrence relation ( 6 )  yields defined 
values for elements. By examining equations (23)-(27) we can see which terms in (6) 
will contribute to the determination of the defined elements of (It"+'. These are the 
terms whose defined elements have eigenstate indices m, n which fall within the range 
of s' given by (39). Since the terms given by (24) and (25) are therefore excluded, the 
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recurrence relation (6) reduces to 

Q,"" = ,.-'[(2s'+ - (2h + (2h + 1) 2 (2h + t)Qt(.!':''-'A, ( 'I2 
- a h ( h  -1)(4h2- l)Q',h-3-h(2h+1)ElQ,"-i (40) 

for y > O ,  s ' = h + ( y - l ) ( u - l ) + l ,  . . . ,  h + y ( u - 1 ) ;  y = O , s ' = O , l ,  ..., h-1 .  Pro- 
vision of appropriate zeroth-order elements permits the deduction of all defined 
elements of 0,"" from (40). 

7. Even power matrices QY 
Proceeding along similar lines for the even power matrices Q!',  we arrive at the 
conclusion that vanishing elements occur for eigenstates m, n satisfying 

h, 7 2 0 ,  u 2 2 .  (41) Im-nl#  2s s = 0, 1, . . . , h + y ( v -  1) 

The recurrence relation for the defined elements becomes 

for y = O , s = O , l , . .  ., h - 1 ;  y>O,s=Oand s = h + ( y - l ) ( u - l ) + l , . .  . , h + y ( u - 1 ) .  
For the diagonal case m = n (s = 0), E l  becomes 2E0 and with an appropriate choice 
of constants we have the relation derived by Swenson and Danforth (1972). 
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